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The problem of the orbital stability of the translation-rotational motion of a rigid body in the shape of a 

circular disk above a fixed horizontal plane in a uniform gravitational field is solved. It is assumed that 

the plane is absolutely smooth, the disk is thin and homogeneous and the collision of the disk with the 

plane is absolutely elastic. In the non-perturbed motion the plane of the disk is vertical, the disk rotates 

with a constant angular velocity about the vertical or horizontal axis and its centre of gravity executes 

periodic oscillations along the fixed vertical as the result of the collisions. 

In the first investigations [l, 21 of the dynamics of a heavy rigid body having an arbitrary 
central ellipsoid of inertia when there are collisions with an absolutely smooth plane, the 
equations of a free motion of the body in the finite time intervals between the collisions and 
fitting of the boundary conditions [3] at the ends of these intervals were used. The boundary 
conditions were derived from the general theory of frictionless collision [4]. Assuming that the 
plane is stationary and the collision is absolutely elastic, the stability in the first approximation 
of the rotation of the body about a principal central axis of inertia was investigated in [l], and 
the peculiar fact that the domains of stability and instability in the height of the jump of the 
body under the plane were “quantized” was found. These results were carried over to the case 
in which the collision is not elastic and the plane executes specified sinusoidal vibrations along 
the vertical direction [2]. 

To investigate the motions of systems with an ideal non-restoring constraint the non-smooth 
change of variables which eliminates the non-restoring constraint and makes it possible to 
derive the equations of motion in the form of Routh’s equations, which hold in an arbitrary 
time interval, was proposed in [5]. This made it possible to solve a set of problems in the 
dynamics of vibrational-collision systems using the averaging method [6, 71. 

The combination of the non-smooth change of variables from [5] and the special choice of 
generalized coordinates, which is realized using a “reducing” change of variables made it 
possible [8] to write the equations of motion of a system with an ideal non-restoring constraint 
in the form of Hamilton’s equations. This approach was then used when investigating 
problems of the stability of the motion of a body when it collides with a horizontal plane and in 
a qualitative analysis of its dynamics by means of the Poincare and the KAM theory methods 
[9-131. 

In this paper, when investigating the stability of the motion of a disk with a non-restoring 
constraint, a method different from the one used earlier [5, 81 is proposed. The non-smooth 
change of variables of [5] is not used at all and the change of variables which is analogous to 
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the “reducing” change of variables in [8] is used to reduce the boundary conditions in the cast 
of collision to the simplest form, when the impulse corresponding to the coordinate on which 
the non-restoring coupling is imposed merely changes sign when the disk collides with the 
plane. The change of variables which reduces the Hamiltonian to action-angle variables in the: 
case of non-perturbed motion is then made. The variable of action is not changed durrng 
collision and the analysis of the orbital stability reduces to an analysis of a Hamiltonian system 
with two degrees of freedom, periodic in the angular variable, in a time interval corresponding, 
to free flight of the disk between two successive collisions with the plane. 

1. THE EQUATIONS OF MOTION AND ‘I’HEIK FIRST IN’I’Li(;KAi.t; 

We will refer the motion of the disk to a fixed system of coordinates OXYZ with the origin 
at an arbitrary point 0 of the plane above which the disk moves and with vertical 0% axis 
(Fig. 1). Let Gxyz be the system of coordinates specified by the principal central axis of inertia 
of the disk, and let the axis Gz be perpendicular to the plane of the disk. WC: will specify the 
position of the disk by the coordinates s. y and z of its centre of gravity in the system of 
coordinates OXYZ and by the three Euler angles w, 8 and cp, specifying the orientation of the 
trihedron Gxyz with respect to the KZinig system of coordinates GXYZ. 

The point M of the disk nearest to the OXY plane is above this plane throughout the motion 
or lies in it. Hence the inequality z zRsin0 holds, where R is the radius of the disk. If WC put 

i= ;;Rsin6 then the non-restoring constraint can be written in the form of the inequality 
z= 
The Lagrange function 

(I.lj 

+~mR*sin*@$*+j/,mR*(rjrcose+cp)* -mg(c+Rsine) 

corresponds to free flight of the disk when 6 > 0. 
Here m is the mass of the disk and g is the acceleration due to gravity. 
The condition for an absolutely elastic collision can be written in the form of the equality 

e =A-. Here and henceforth the values of corresponding quantities before and after collision 
are given the subscripts minus and plus. 

Fig. 1. 
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All the generalized coordinates x, y, c, w, 8, cp and all the generalized momenta, except the 
momentum pc corresponding to the generalized coordinate <, remain constant on impact [14]. 
Noting also that the Lagrange function is independent of x, y, w, cp, we obtain the integrals 

P* = m.+ = c, = const, py = mj = cy = const 

ply =%mR2sin2Ch$+~mR2($fcos8+f$)cos0=)/4mR2a(a=const) 

p+, =%mR2(\ircos9+@)=MmR2B @=const) 

(1.2) 

0.3) 

which hold throughout the motion, including the intervals of free flight of the disk and the 
instants when it collides with the plane. 

From (1.2) it follows that the projection of the disk centre of gravity onto the OXY plane 
moves uniformly and rectilinearly. Without loss of generality we shall assume that c, = c, = 0 in 
(1.2), i.e. the disk centre of gravity moves along the specified vertical. According to (1.3), the 
projections of the disk angular momentum about the centre of gravity onto the vertical and 
onto the axis of symmetry Gz are constant in the process. 

In what follows it is convenient to use the Hamiltonian form of the equations of motion to 
describe the free flight of the disk. Setting 8 = x/2 + q and introducing the momenta 

p=)/4mR2(1+4sin2q)i-mRsinqc 

p6 = rnc-mRsinqq 

we obtain the Hamilton function 

(1.4) 

0.9 

H= --&p’+-$sinqpp{ +-$1+4sin’q)pt + 

+A(cc+2psinq)2 +mg(<+ Rcosq) 
8 cos2 q 

(l-6) 

It follows from the equality e =-i- and the equation 4 =aH/ap, that the values of the 
momentum pC before and after collision are related by the formula 

PC+=-pi_ 
Ssin q 

R(1+4sin2q)P (1.7) 

The quantities q , p and [ do not change during the collision 

2. NON-PERTURBED MOTION. THE ACTION-ANGLE VARIABLES 

It follows from the equations with Hamiltonian (1.6) and boundary conditions (1.7) that 
motions exist in which the disk plane is vertical and the disk itself rotates with a constant 
angular velocity about the horizontal or vertical axis. 

In the first motion we have 

q = 0, \ir = 0, 

In the second motion we have 

q=o, \ir=Co2, 

+=0,(9=x/2, ol=o, P=o,) (2.1) 

+=o (8=x/2, ct=o2, p=o> (2.2) 
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The motion of the disk centre of gravity then occurs along the fixed vertical and, when c > 0. 
is described by the equations 

I--=-J-- 2+mg< 
2mpc 

(2.4) 

while the constraint of the values of the momentum 4 before and after a collision of the disk 
with the plane, obtained from (1.7) when 9 = 0, has the form 

Pr’ =-Pi (2.5) 

As the result of collisions between the disk and the plane its centre of gravity executes 
periodic motion with period z = 2(2h/g)“’ where h is the height of jump of the lowest point of 
the disk above the plane, and the quantity z is equal to the time interval between two 
successive collisions. The trajectory shown in Fig. 2 corresponds to the periodic motion of the 
centre of gravity in the phase plane <, pr. This trajectory is a parabola, given by the equation 

pi I (2m) + rngc = mgh (2.6) 

If we assume that the collision occurs in the time “interval” from t = -0 to t = +O, we have 
6 = 0, pc = pi = -m(2gh)“2 when t = - 0 and 

r(t)=-gt2 /2+(2gh)%, pr =m(2gh$ -mgt (2.7) 

when Ost<r 
On collision there is an abrupt change in momentum from pi to pt. The part of the phase 

trajectory lying on the axis 5 = 0 corresponds to this variation in Fig. 2. 
For what follows it is useful to describe the non-perturbed motion of the disk centre of 

gravity in terms of the variables Z and W, where Z is the action and W is the corresponding 
angular variable [15]. We have 

Fig. 2. 
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where the line integral is computed along trajectory (2.6), whence we obtain an expression for 
the height of the disk jump in terms of the action variable in non-perturbed motion 

9x2 )5 
h= - ( 1 8m2g 

ZM w-9 

The Hamilton function (2.4) in the action-angle variables is 

I- = I-(Z) = (9mrt2g2 / 8)X 1% (2.9) 

To obtain an explicit form of the canonical transformation 4, l,+ I, W we will use the fact 
that the solution of Eqs (2.3) is known. This is specified by formulae (2.7). It is only necessary 
to replace h by Z in them in accordance with formula (2.8) and to express the time in terms of 
the angular variable using the fact that W = o(Z)& and 

The desired univalent canonical change of variables is 2rr-periodic in W and is specified by 
the formulae 

r( 9 1 ~z%v(*lc-W), pc= 9 ( 1 
K 

=ii2& z+- W) (2.10) 

when O<Wc27r. 
It is significant that the action variable is not changed on collision. This is obvious from (2.5) 

and from the formula for pc in replacement (2.10). However, this follows directly from the 
geometrical meaning of this variable: Z is the area divided by 2x bounded by the phase traject- 
ory in Fig. 2, and this quantity is constant in the non-perturbed motion. 

3. SIMPLIFICATION OF THE BOUNDARY CONDITIONS 

We will investigate the orbital stability of the disk translation-rotational motions described 
in Section 2. This means that the stability of these motions with respect to the variables 4, 4 
and the height h of the disk jump above the plane will be considered. The constants 01 and p of 
integrals (1.3) are assumed to be non-perturbed. We will consider in detail the case when the 
disk rotates about the vertical in the non-perturbed motion. 

We will first make the canonical change of variables [, q, 4, p + Q, 5, P, r( such that the 
coordinate c remains unchanged ([ =Q), the momentum TJ stays constant on collision and 
boundary conditions (1.7) takes a form analogous to relations (2.5) in the non-perturbed 
motion 

p+ = -p- (3.1) 

We take the generating function of this replacement in the form 

where the function fis as yet unknown; it will be found from condition (3.1). 
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In implicit form the desired canonical transformation is given by the equalities 

Since q+ = q-, l,+ = [-, p+ =p- the last relation of (3.2) gives the equality 
(3.2) into account, condition (1.7) can be written in the form of the relation 

TV+ = q-. Taking 

p+ z-p- _q 
[ 

af -+ 
4sinq af 

ay R(1+4sin2q)& 1 

which, by the condition of the problem, must be equivalent to relation (3.1) for 
_ __ any 71. Hence it 
follows that the function satisfying the linear homogeneous first-order partial differential 
equation 

(3.2) 

SC+ 
ay 

4sin9 g=, 
R(1 + 4sin2 4) a9 

can be taken as the function f([, q). 
The general solution of this equation is an arbitrary differentiable function of the first 

integral of the corresponding ordinary differential equation [16]. 
Assuming that the replacement 5 = f(c, q) is identical (i.e. f(0, q) = q) when c = 0 we find 

that the function is given implicitly by the equality 

For small values of q we have 

and the change of variables <, q, 4, p -+ Q, 5, P, TJ is given by the series 

p=ex~(-S~~+~(l-exp(-~))~2?l] + . . . 

c=Q, pc=P-$~+$~3~ + . . . 

The dots here denote terms whose power with respect to 5 and TJ is not less than five. 

4. THE HAMILTON FUNCTION OF PERTURBED MOTION 

(3.3) 

(3.4) 

In new variables Hamilton function (1.6) (when a = w,, p = 0) can be represented by a series 
in powers of 5 and q, whose coefficients are functions of Q and P. This series does not contain 
terms which are linear in 5 and 9 and, when e= IJ = 0, is the same as the right-hand side of 
expression (2.4) in which pc = P, 6 = Q. 
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Now let us introduce the canonical conjugate variables J and u instead of the variables P and 
Q by the formulae which are analogous to (2.10) 

P = (3n2d 9% (u), JHh (u), (4.1) 

where fi and f2 are the 2rc-periodic functions. We have 

fi =1-u/w, fi =u/x(2-v/n) (4.2) 

when O~u<21c. 
In non-perturbed motion J and 2) are the action-angle variables I and W introduced in 

Section 2. 
To investigate the stability we will take as the perturbations the dimensionless quantities x1, 

X, and r, introduced by means of the canonical transformation (with valency 4/(mR2c0,)) 

5 =x1, 11 = )/4~20p2* u=‘u, J=l+Y4mR’0~r (4.3) 

The stability with respect to the variables x1, X, and r means the orbital stability of the 
periodic motion of the disk. It is essential that all three quantities x1, X, and r are not changed 
during the collision. 

In addition, if we change to dimensionless time o,r we obtain, after quite lengthy 
calculations using (1.6), (3.4) and (4.1)-(4.3), the Hamilton function of the perturbed motion in 
the form of a series given in powers of the quantities x1, x, and r with coefficients 2x-periodic 
in u 

H=H,+H,+... (4.4) 

where H, is the form of power k relative to x1, x,, Ir l1’2. In expansion (4.4), there are no 
forms of odd powers 

(4.5) 

(4.6) 

Here 

fs = exp(a2bf2)), f, = a2b2f,? - b + 1, cm = -21~’ I (a4b2) 

hz~ =46(bf: +fifi)l(ab). b =-snfi /(at&) 

& =j!i(l7-25/f3), h 40 =f3[2(25-21f3)+2a2b2f:(25-27f,)-b(50-5lf3)]/24 

(4.7) 

The dimensionless parameters a and b, on which Hamiltonian (4.4) depends, are defined by 
the equalities 

a=co2(2h/&. b=4gl(oiR) (4.8) 

5. THE STABILITY IN THE FIRST APPROXIMATION. 
CHARACTERISTIC EXPONENTS 

The first approximation is described by the equations with Hamiltonian (4.5). If one takes 
the angular variable u as the independent variable in these equations then the equations for x1 
and x2 are separated. The Hamiltonian 2lc-periodic in u of the form 
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corresponds to them. 
To investigate the stability in the first approximation it is necessary 10 compute the 

fundamental matrix X(u) of solutions of these equations. The explicit form of this matrix 
cannot be found in the general case of a linear system with periodic coefficients. In the 
problem under consideration it can be found if one uses the fact that free flight of the disk 
above the plane corresponds to the variation of the variable u from 0 to 27~. During this flight. 
according to equalities (1.4) and (1.5) and the equations of motion with Hamiltonian (1.6). the 
relations 

ij+wgq=o, p=%mR24-m(2gh)Y2Rf,(u)q 

are satisfied in the linear approximation in ri and p. 
In addition, taking the equality 2) = ~lo& la and formulae (3.4) and (4.3) of the replacements 

of variables into account, we find the genera1 solution of the linear equations with Hamiltonian 
(5.1) in the form 

X, =f;K(cIsinE+c2cosT) 
x 

Y2 
x2 = f3 c, (cos f!i?! - abf, sin T) - c2 (sin E + abf, cos 

x 7t 

where c, and c, are arbitrary constants. 
The elements _Y,, of the matrix X(u) satisfying the condition X(0) = E, where E is the identity 

matrix, will be 

x,, = j&‘(cosz+absinF), xl2 = j? sin: 

x21 
=fi4[ab(1-fi)cos~-(l+o’b2fi)sin~], ’ x22 = f3 2 (cos y - abfi sin 

The characteristic equation of the matrix X(2x) can be represented in the form 

p2-2Ap+l=O A=cos2a+absin2a (5.3) 

If A> 1 then Eq. (5.3) has a root whose modulus is greater than unity. In this case the 
periodic motion of the disk in question is unstable (regardless of the linear terms in the 
equations of perturbed motion). If I A I < 1 then both roots have moduli equal to unity and the 
stability (in the first approximation) occurs [17]. 

After some reduction, we obtain that the condition I A I < 1 is equivalent to the set of two 
systems of inequalities 

-ctga < ab c tga, tga c ab c -ctga (5.4) 

In the plane of the parameters a and b there is a denumerable set of domains of instability 
and of the stability in the first approximation. They are shown in Fig. 3. The domains of in- 
stability are shown hatched. The domains of the stability are denoted by the digits, 1. 2, 3. . , . 
The domain with number 1 is bounded below by the segment of the axis h=O on which 
7c(I-- 1)/2 <a < d/2, the straight line a= d/2 is its right boundary while the curve b = tgala is 
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w2 n 3Zi.Q a 

Fig. 3. 

its curvilinear boundary when I is odd and the curve h = -ctga/a plays the same role when 1 is 
even but in the domain themselves b < tgala and b c -ctgala respectively. 

In the domains of the stability in the first approximation the roots of Eq. (5.3) can be written 
in the form pl,z = exp(+ih) where +A are the characteristic exponents. From (5.3) it follows 
that cos27c3L = A. From equality h is not defined uniquely. The ambiguity is removed if one 
uses the fact that h is continuous with respect to the parameters. In fact, if one puts b = 0 in 
Hamiltonian (5.1) we obtain the Hamiltonian of a harmonic oscillator with frequency h = Q/K. 
Therefore, in the domain with number I we have 

&arccosA+i(1-1). I is odd 
h= 

-$ccosA+~l, 1 is even 

6. THE NON-LINEAR PROBLEM OF STABILITY 

We will now consider the non-linear problem of the orbital stability of the periodic motion 

w 

of the disk for values of the parameters a and b lying in the domains of its stability in the first 
approximation. To do this it is first necessary to reduce the Hamilton function (5.1) to normal 
form 

(6.1) 

by means of the 2rc-periodic in u linear canonical transformation x,, X, + y,, y,, which 
corresponds to harmonic oscillations with frequency h computed by formulae (5.5). Since the 
fundamental matrix X(u) of solutions has been found in explicit form then, according to the 
algorithm of [18], the transformation x,, X, + y,, y, can also be obtained in explicit form 

x2 = “21 WYl + n, (U)Yz 9 (6.2) 

“12 = -Kx12 sin Au - tc-‘x, 1 cos h, (6.3) 

%!2 = -K*22 sin XV - K-‘x~, cos& 
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K = (sin 21Eh I sin 2a$ 

The functions .Y,~(u) are defined by equali ties (5.2). 
The canonical transformation (6.2) can be specified usin g the generating function S,. By the 

theory of canonical transformations the Hamilton function (5.1), its normal form and the 
function S, are related by the identity 

A. I’. Markepev 

If we now take the generating function S, = r;u+Jr then equalities (6.2). supplemented 1~~ 
the formulae 

u=asz=u as2 as, 

at, ’ 
~=-=~+- 

au ’ au 
ih.5) 

(the derivative &S, /au is specified by identity (6.4)) will give the canonical univalent tranx- 
formation u, r, x,, x, + u,? fit yl, y, of all phase variables on which the Hamilton function 
(4.4) of the perturbed motion depends. 

Substituting x,, x2 and r obtained from (6.2)-(6.5) as functions of the variables vi. y,. pi. ti 
into (4.4) we find the Hamilton function of the perturbed motion in the form 

(6.61 

where K, is the form of the power m relative to y,. _vJ with the 27c-periodic in 11 coefficicars 

K,,, = C kijy;‘y;, asi 
i+j=m 

K2 = 2c2,, ,+h& +h& 

where %,/au, X, and .Y? are defined by (6.2)-(6.4). The dots in (6.6) denote the terms of the 
series whose power relative to yi, y? and ‘; is greater than five. 

We must now normalize the terms in (6.6) of the fourth power. The normal form will he 
different depending on whether resonance of the fourth power (4X = rz is an integer) exists in 
the system or not. It follows from (5.3) and (5.5) that this resonance occurs when the 
parameters a and b take values satisfying the equality ub= -ctg2a. The corresponding 
resonance curve exists in each of the denumerable set of domains of stability in the first 
approximation. In Fig. 3 the resonance curves are represented by the thin solid lines. 

A near-identical, Zn-periodic in u canonical transformation f;. U. y,. y: -+ u,. v,, T;. :% 
normalizing the terms of the fourth power in (6.6) can be found by one of the Dcprit-Hori type 
methods [18] or using classical perturbation theory. Computations show that, when there is no 
resonance 4h = ~1, Hamiltonian (6.6) normaiized up the terms of the fourth power inclusive has 
the form 

H= jh.7 1 
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The quantity c, is defined in (4.7). 
When the inequality 

6PC20h2-Cllh+C()2 +o (6.8) 

holds, the motion in which u, =p2 = 0 is stable in Lyapunov’s sense with respect to the 
variables u1 and u, [19, 201. Hence the orbital stability of the periodic motion of the disk 
follows in this problem. 

But if the parameters a and b lie on the resonance curve 4h = n then in (6.7) terms of the 
form 

&fSin(?W, -&‘2)+f?COS(?lV, -h’,)] 

where 

e = -$T[(k.o - kz2 + k,)cosnu + (k,, - k,,)sinnu]du 
0 

are added to the terms of the second power in uI and u2. 
When the inequality 

16l< (d2 + e2)K (6.9) 

is satisfied instability occurs. The periodic motion of the disk is orbitally stable if the opposite 
inequality to (6.9) holds. 

An asymptotic analysis, carried out for small values of the parameter b, showed that the 
estimates 

6 = -2(& + O(P), (d2 + e+ = @I-) 

hold as b + 0, whence it follows that for sufficiently small b the periodic motion of the disk in 
question is orbitally stable whether or not resonance exists. 

For arbitrary values of the parameters a and b inequalities (6.8) and (6.9) were checked on a computer 
for the first three (i = 1, 2, 3) regions of stability in the first approximation. It was found that there are 
instability sections on the resonance curves. These sections in the first, second and third regions are given 
by the inequalities 1.18188 < b < 1.26758, 0.61620 < b c 0.63659 and 0.41574 < b < 0.42454, respectively. For 

the problem of stability to be solved at the boundary points of these intervals one must take into account 

terms of powers higher than the fourth in the series expansion of the Hamiltonian of the perturbed 

motion. For non-resonance values of the parameters a and 6, lying on the resonance curves, where 
inequality (6.8) is not satisfied, we have an analogous situation. These curves are shown in Fig. 3 by the 

dashed line. They intersect the resonance curves in the instability sections mentioned above. The periodic 

motion of the disk is orbitally stable for the remaining values of the parameters a and b of the first three 

regions of the stability in the first approximation. 

Note. It follows from (1.6) that if the unimportant constant is neglected the Hamiltonian of the 
perturbed motion for motion (2.2)-(2.5) considered becomes the Hamiltonian of the perturbed motion 
for (2.1), (2.3)-(2.5) when 2~0, is substituted for w,. All the conclusions on stability, obtained for the 
periodic motion of the disk when it rotates about the vertical, can be extended, by a simple change in the 
parameters n and 17 specified by equalities (4.8), to the case in which the rotation occurs about the 
horizontal axis. 
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